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Abstract . ‘

It is a common practice to use the Davidson and MacKinnon's J-test in empirical
applications to test non-nested model specifications. However, when the
alternate specifications fit the data well-the J- test may fail fo distinguish between
the true and false models: the J-test will either reject, or fail to reject both
specifications. We show that it is possible to use the information generated by
the J-test and combine it with the Bayesian posterior odds approach that would
yield an unequivocal and acceptable solution: for non-nested hypotheses. We
show that the approximations of Schwarz and Bayesian Information Criterion
“based on classical estimates for the J- test yield the Bayesian posterior odds
without any need for the specification of the prior distributions and the onerous

Bayesian computations. :
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1. Introduction
4 The non-nested tests of hypotheses arise in situations when the alternate hypothesis
cannot be defived as a special case of the null hypothesis. This may arise either due to-
completely different sets of regressors in competing model specifications or different distributions
of the stochastic terms. One of the most widely used tests in applied econometrics for comparing
non-nested hypotheses is the J-test proposed by Davidson and MacKinnon (1981).

When éach of the competing hypotheses is successful in explaining the variations in the
data, the J-test may not be able to discriminate between alternative specifications. Some of the
situations in which the J-test does not discriminate between the competing specifications ha've‘
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already been noted. Godfrey and Pesaran (1982) state the -following one or more conditions
where the J-test is likely to over reject the true hypothesis: (i) a poor fit of the true-model; (ii) low
or moderate correlation between the regressors .of the two models; and (iii) the false model
includes more regressors than the correct specification. Davidson and MacKinnon (2004) agree
that the J-test will over-reject, “often quite severely” in finite samples when the sample size is
small or whete conditions (i) or (jii) above are obtained. Gourieroux and Monfort (1994) conclude
that the test is very sensitive to the relative number of regressors in the two hypotheses in
particular, the power of the J-test is poor when the number-of regressors in the null hypothests is
smaller than the number of regressors in the alternative one.

It is possible, however, to find examples in the literature where none of the above noted
conditions are violated* and where the J:test rejects all models. McAleer's (1995) survey of the
use of non-nested tests in applied econometric work reports that out of 120 applications all
models were rejected in 43 applications. However, he did not break down the rejections by the
type of test used. Bernanke, Bohn, Reiss (1988) had similar conclusions of non-rejection of two
non-nested aggregate investment demand models.

Here, we give three examples of empmoal work on the consumption functions that
illustrates this situation. '

Greene [2003, 2007] reported the results of comparing the same two consumption
function hypotheses using quarterly data for the period 1950:2 — 2000:4. The results of the test
lead him to a similar conclusion: “Thus, H, should be rejected in favor of H;. But reversing the
roles of Hy and Hy... Hy is rejected as well.” Although Greene did not report on the goodness of
fit, it is very likely, as in the E-Views 5 data, that each of the models had explained almost all of
the variation in consumption. :

In the econometrics software E-Views the J-test is used to compare two hypotheses '
regarding the determinants of consumption. The first hypothesis is that consumption is a function
of GDP and lagged GDP. The alternative. expresses consumption as a function of GDP and
lagged consumption.. The data used are quarterly observations, 1947:2 — 1994:4. The conclusion
reads: “we reject both-specifications, against the alternatives, suggesting that another model for -
the data is needed.” [p. 581]. This conclusion is surprising, for the coefficient of determination
reported for each of the models was .999833, a value that would have lead most researchers to
accept either of the models as providing full explanation for the quarterly vanablhty of
consumptlon over almost half a century.

The third example is found in Davidson and MacKinnon [1981] where they report on the
results of applylng the J-test to the five alternative consumption functior. models examined by
Pesaran 'and Deaton [1978]. In spite of the fact that the coefficients of determination for all the
models are quite high, ranging from .997933 to .998756 [Pesaran and Deaton, 1978, 689~ -91],
each of the models is rejected against one or more of the alternativés.

In this paper we show that when we wish to test alternative non- nested specifications that

are successful in explalmng the observed variations, the J-test is likely to be inconclusive. While
advances,anot lmprovements on the J-test such as the Fast Double B_ootstrap ‘proeedure

4 Thatis to say that"each of the alternative hypotheses fit the data extremely well, where the regressors of
the alternative hypotheses are correlated, where the alternatlves have the same numbers of regressors,

J test is inconclusive.
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[Davidson and MacKmnon 2002] have been made and are reported to.increase the. power of the
test, it appears that in doing empirical work researchers still use the standard J-test[see for
‘examples: Faff and Gray (2008) or Singh (2004)].

In the discussion below Wwe use the original test as this allows for olarlty of exposmon

In section 2, we point out the theoretical reasons why the test may. lack power in testing
model specifications that fit a given set of data well. We do this by expressing the test statistic in
terms of the correlation between the variables in the alternative .specification. In section 3, we-
illustrate the problems encountered in using the J-test in empirical work by applying the test to
two alternative specifications desugned to explain monthly output behavior in 24 industries.

In section 4, we present a testing paradigm (Surekha, Ghali andKrieg, 2008) for non-
nested hypothesis that can be implemented to supplement the J-test when the J-test proves
inconclusive. We use log-likelihood values which are obtained in the process of applying the J-
test to approximate Bayesian information criteria and Bayes factors. This allows us to-circumvent
the complexities of the Bayesian approach, namely that of specifying the prior distributions and
computations of marginal likelihoods. This specification testing' method yields results that do not
depend on the choice of the null or the maintained hypothesis. We provide empirical application
of the Bayesian exténsion of the J-test by applying it to the same data on the 24 industries
studied in.section lil, to enable us to contrast the. results of our procedure with the J-test. Finally
we discuss some public policy spemﬂcatlons that may be studied using: the proposed Bayesian
extension to the J-test.

2. The J-Test

An “artificial regression” approach for testing non- -nested models was proposed by
Davidson and MacKinnon {1981, 1993]. ConSIder two non-nested hypotheses that are offered as

alternative explanations for Y: .
Ho: Y = XB +€,, and o . (2.9)
Hip Y =2y +g,, ' ‘ (22)
The error termse,, &, satisfy the classrcal normal model assumptlons X has k1 and Z has

k2 independent non-stochastic regressors.

We write the artificial compound model as: . i '

Y =(1-a)XB +aZy+¢ I ©..(2.3)

If this model in (2.3) is éstimated, we test the non-nested :model by testing one
parameter: when «=0, the compound model collapses to equation (2 1) and when o = 1, the
compound model collapses to equation (2.2).

Because the parameters of this model are not identifiable,” Davidson and "MacKinnon'
suggest replacing the compound model (2.3) by one “in which the unknown parameters of the
model not being tested are replaced by estimates of those parameters that would. be consistent if
the DGP [data generating process] actually belonged to the model they are defined”. (Davidson ‘
and MacKinnon, 1993, p. 382) Thus, to test equation (2. 1) we replaoey in (2.3) by its estimate’
¥ obtamed by regressing Y onf Z. Further, if we rewrite Y =Zy, the equation fo be estumated to

test whether o=0 is:
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Y=({1-a)XB+ a\?z +E ) T L (2.3)
éiﬁy’larly, to test equation (2.2) we estimate B by fitting equation (2.1) to the data and
replace XB in (2.3) by X3=Y,. The equation to be estimated to test (2.2) is then,

Y (- )V, +azy+e . ' (23
The J-est apﬁliés the standard. Student's t-test for the estimated coefficients of?z.in
equation (2.3") and Y, in equation (2.3"). A‘statistically significant t-statistic on the coefficient of
Y, rejéct_s Hp as the appropriate model and a significant t-statistic on the \?x coefficient results in

the rejection of Hy. For the consumption function examples described earlier in- the introduction,
both t-statistics result in the rejection of each model. As some of the regressors in (2.3') and
(2.3") are stochastic, the t-test is not strictly valid, a point noted by Davidson and MacKinnon who
- show that the J and P tests (which in [linear models] are identical) are asymptotically valid.®

In this section we show that the ttest statistic for the significance of @ in (2.3"), thus the
decision we make regarding the hypothesis (2.1), depends on the goodness of fit of the
regression of Y on Z, the goodness of fit of the regression (2.3') as well as the correlation
between the two sets of regressors in (2.3"). We show this using the F ratio for testing a=0, which
is identical to the square of the t-value since we are interested in the contribution of only one

.regressor\?z. A similar statement applies to the test of the significance of (1 - o) in (2.3").

Consider the OLS estimator of the coefficient o, of the model (2.3'). Using a theorem due
to Lovelf (1983, p. 1001),° the OLS estimate of « and the estimated residuals will be the same as
those obtained from regressing the residuals of the regression of Y-on X,. MY, on the residuals

- ofregressing Y, on X, , MY, ::

MY =aM, ¥, +M.e . . (2.4)
* Where, M, =[I-X(X'X)"'X"], and Y, =Z{and{ is the estimated regression coefficients of Y on Z:
T Wiiting, P, = Z(Z'Z)"Z", we wite (2.4) as: |

MY = aM,P,Y +M,¢ .

The OLS estimator of o is then:

@=[YP,MP,YI"YPMY : : - (2.5)
The residuals of OLS estimation of (2.4) are:

M,E =[MY ~8&MP,Y]

® - They also add, "also indicates why they (J and P tests) may not be well behaved in finite samples.
When the sample size is small or Z contains many regressors that are not in S(X)..." We do not
consider these situations in what follows, . » .

5, [vell's theorem 4.1 generalizes (to deal with seasonal adjustment) a theorem that was developed by R.
Frisch and F. Waugh for dealing with detrending data. Green (2003) extends the application to any
partitioned set of regressors. : .
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Since (2.4) has only one regressor, under the null hypothesis that o =0 the F-statistic is
the square of the t-statistic. : '
The sutn of squares due to regressron of equation (2. 4) Q, is given by

Q=4a'Da, where D = Y'I\/I Y
Consider regressing Y on X only and denote the residuals of that regressron by (=M Y

and regressing Y, on X and denote the residuals of that regression by: ¥ = M,Y,. We can then

- (2.6)

write:
A KT IR Fa¥ . . : .
o= (VUYVU ang . .. (2.5)
Q= YM Y IGMY, T VM,Y = 00 00) a0 = (259) LA . (26)

The residuals from OLS estimation of (2.4) ean be written as:

- ME=[MY - 8MP,Y]=(—80 = 0~ (00" (VO
The sum-of the squared residuals from estimating (2.4) is: _
A’Mé“zt‘z—‘ ZGO)Z/Z\’\/Z] - L (27)
This sum of squares has (T-kq1) degrees of freedom Where Tis the number of .

observations and k; is the number of variables in X.
Thus, under the hypothésis that a=0; the F—statlstrc is:’

F(1,T—k1 )= QU EME/ (T )] .—.[Zﬁz}ghul/iz GO)Z}(T_kd ~1) . (2.9)

This test statistic can be expressed'ih terms of correlations between the variables. We
show in the Appendix that: .
| “;“k‘ Ry, Ry ‘ .(2.10)
(1-RG)(1-RE,) - [R RynyxyZ]
Where we placed the superscript 2 to denote that it is a test for the second model, equatron (2.2),
undér the assumption that the first model is true, and where: - :

FAT -k ==

2 ) . . .
BV" is the coefficient of determination of the regression of Y on Xonly;

2
Rye is the coefﬁcient of determination of the regression of Y on Z only,

2
Rox is the coefficient of determination of the regression of Yz on X,

7 See equation (22) of Godfrey and Peseran (1983).
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R.o .~ ; - Y Y . ) R .

) %92 js the correlation coefficient of Y% and YZ, and since these are linear combinations

of Xand Z respectively, Ry, is the canonical correlation of the alternative regressors X and Z.2

Because the J test is symmetric, the second part of the J test, maintaining (2.2) and
testing for the dignificance of (1 - a) in (2.3"), the test statistic, denoted as 'F is:
(T K, ~ DRy ~RyRys, I - (2.11)

. 1F(1,T—~k2 _.'1) = - —_
(1=RE)(A-RE) =Ry ~R Ry, I

From these two test statistics we note the following:

When sample size is small, the difference between the numbers of regressors in the
competing model will affect the sizes of the test statistics. If the data were generated by the
; model of (2.1), the test statistic 'F will get smaller as the number of regressors in the alternative

! .model, ks, increases.” This may lead to the rejection of (2.1) in favor of the alternative model (2.2),
" particularly if the number of regressorskj is small. This is consistent with Godfrey and Pesaran’s
(1982) simulation-based findings as well as with Gourieroux and Monfort (1994) who conclude
that the test "is very sensitive to the relative number of regressors in the two hypotheses; in
particular the power of the J- test is poor when the number of regressors in the null hypothesis is
.smaller than the number of regressors in the alternative one.” However, the influence of the
differentials in the number of regressoré will become negligible as sample size increases.

When a model is successful in.explaining the variations in Y the J-test is likely to reject it.
To see this clearly, assume that the alternative regressors are orthogonal so thatRmz =0, If

model (2.1) is successful, the high coefficient of determination R’yzx will increase the numerator of

(2.11) while reducing the denominator, thus increasing the value of the test statistic 'F which
leads to rejection of the model (2.1). Similarly, if the model (2.2) is successful in éxplaining the

variations in Y, the high value of R§ will increase the value of the test statistic 2F which leads to

Z

the rejection of model (2.2). When both models are successful in explaining the variations in Y,

the combined effect of high R and R, lead us to refect both models. Such was the situation in

Davidson and MacKinnon[1981] reportj'on the five alternative constimption functions where the
coefiicients of determination for all the models ranged from .997933 to .998756, yet all the
models were rejected. This would be at variance with the concltision reached by Godfrey and
Pesaran (1983) “when sample sizes are small the application of the (unadjusted) Cox test or the
J-test to non-nested linear regression models is most likely to result in over rejection of the null
hypothesis, even when it happens to be true, if ...the true model fits poorly”, unless the fit of the
" false model also fits poorly. '

8 V\/heré there is only one regressor in each of X and Z, the coefﬁcientRmz is the correlation between the
two regressors and the test statistic simplifies to:
(T-k, ~ 1)[I§Yz -R,R, T

1-R% -R% ~R%, +2R R R~

F(U,T—k, ~1) =
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R, s, is the canonical correlation coefficient of the sets of regressors X and Z. Highef

values of this correlation would reduce the numerator and increase the denominator of both

" (2.10) and (2.11), lowering the values of the F statistics. The éffect would reduce the likelihood of
rejecting either of the competing hypotheses. The reverse, as stated in Godfrey and Pesaran.

(1983) is also true: “when the correlation among the regressors of the two models is weak’ the J-
test “is most likely to result in over rejection of the null hypothesis, even when it happens to be
true,” ' C
The effect of the coefficients of determination of the alternative model specifications’on
. th,'e F statistic is shown in Figure 1':9,!,n this figure, the light grey areas represent combinations of
ij and Rﬁz that result in rejecting the X model (2.1) and failing to reject the Z rﬁ_&}d{el‘(2.2). This -

is appropriate since for those combinations, the model using the set of éxplgﬁé ‘vafiables Z is
clearly. superior to.that which uses the sef X. The dark grey areas repiésert ombinations that
result in rejecting the model that uses the set of explanatory variablgs: Z-and‘failing fo'reject the

model which uses X. - Again, this is clearly appropriate. The interior white-areas: represent

combinations of the coefficients of determination for which the J-test fails 15 fejeét both models.
Within those areas comparisons of the coefficients of determination for ‘the two alternative
‘models, particularly for large samples would have led to the conclysion that neither model is
~ particularly useful in‘explaining Y. The black areas represent combinations of R§x and Rﬁz that

" résult in rejecting both hypotheses. What is remérkabie is the size of these areas compared to the -

other areas and the fact that the black area encompasses combinations of R% afid R}, that,
because of their large difference, would reasonably preclude & researcher fiom erriploying the J

. test. For instancs, consider fwo competing models in the middle panel (the case of n = 100 and -
R =.4). If one model had ;'fo‘::;Q‘ and the other R., =6 !:flthe,:'qf'.'i.ést. WOyla"féject both
models despite the fact that the X model would: be traditionailly viewed as thé supérior model
based solely on the comparisons of the coefficients of determination.

o The canonical correlation of the competing model's independent variables impacts the
- pérmissible values of the J- test. The first panel demonstrates a canonical correlation befween

regréssors set at zero, in the second panel it is set at .40 and in the third it is set'at .90, Itis

®  The coefficients of determination and the ‘canonical correlations are subject 10 réétripti(‘:)n's,ﬂ Since the

quadratic form  £'M,E = Zﬁz%[(Z'G'\“i)"‘./ S 0] is positive semi—deﬁnite,Zﬁ%Z-\f; > (00)°, that
is: (1-R2)(1-RE) 2[Ry, ~Ry Ry 5. i The ~rg:é‘tricﬁcms imply that wﬁgn’ the .c'é.n‘né'qiacélf correlation

between X and Z is zero (the two sets of alternative explanatory variables are orthogonal, R:x + Rf,z .5'1
Thus, in figures (1.a), (1.b) and (1.c) where the canonical correlation is set at zero, the only feasible
region is the triangle below the line connecting the points Rf,x =1 and Riz =1, When the canonical
correlation is different from zero, the restriction on the relationship between -the coefficients ‘of.
determination Tesult in the elliptical shape of the feasible region shown in the second and third columns
of Figure 1. Combinations of the coefficients of determinations outside of the ellipse violate the
restriction. . . :

1 The white spaces outside 'of the shaded areas are regions where the combinations of the coefficients of
determination that -are not permissible- they result in violating _thie - requirement that-

EM,E = > 0% ~[(340)* /3 .0* Jis positive semi-definite.
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worth:noting that when the canonical correlation is greater than zero, the size of the permissible
region decreases as the correlation increases. In the exitreme case where the canonical
correlation approaches 1, so that each of the variables X and Z are a linear combination of the
other, the permissible combinations of the coefficients of determmatlon R%y and R%, will lie on:
the 45 degret dlagonal emanatmg from the ongm
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Notes: Black area represents reject both region, red (light grey) area represents reject the X model and fail
to reject the Z model, blue (dark grey) represents reject the Z and fail to rejéct the X model, interior white
areas represents fall to reject both models. All graphs were produced at a 5% level of sngmf‘ cance.

Flgure 1. J-Test Results for Various N sz ) R2 , and R

"The effect of sample size on both the-permissible region, we ‘presgant the ‘figures for
sample sizes 30, 100 and 1000 in each of the three panels. The size of thé permissible region
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depends only on.the value of the canonical correlation, and is independent of sample size as
would be expected. 1t is clear from these figures that as sample size increases, the area in which
the J-test would Jead 't6 the rejection of both hypotheses expands and thus covers increasingly
larger areas of the permissible region. in the next section we presént empirical example based on
data for the select US industries to examine the issues with J-test in empirical applications. Our
analysis shows yet another examplée of non-nested econometric models where the J-test fails to

choose either model uniquely. -

3. Determinants of Monthly Variations in lndustry Output .

3.1 Alternatlve Model Specifications for Productlon Behawor

We now apply the J-test to compare two model speclf jcations that have been used to
explain monthly variations in industry output (Ghali, 2005). In both specifications manthly output is
determined by -sales. In one specification the stock of inveritories also influences- production, .
while in the other specification inventory stock does not play a role. The two specifications also
differ in the way in which the variable sales enter into the speCIflcatlon

l\/llnlmlzmg the discounted cost over an Jinfinite horizon for. the traditional cost functlon
used by many researchers results in the Euler equatlon reported by Ramey and West(1999 p.
885). Solving for current period output Q and assummg the cost shocks to be random, " we get
the following equatlons .

Q =B, +By[AQ; ~2bAQ,,, +b2AQ,,, 1+ B,Q +[33Sm +B4H +ui , , o (3.1)
where Q; is output in month /", S;is sales and H; is the inventory stock at the end of the month.

The minimization of the cost using an alternative cost function (Ghali, 1 987) and solvmg
the resulting Euler equation for output we get: '

Qi =Y, + Y45, +YzS Ty, . . : . . - (3:2)
where Sy represents sales in month “/' of productioh planning horizon “t’ and S, is the average
sales over the production planning horizon.

~ We apply the J-test to choose between the two non-nested rﬁodel spéciﬁcations;.Mf in
equation (3.1) and M2 in equations (3.2) as each explains the monthly variability of production.

3.2 The Da.ta.

- The ddta we use are those used by Krane and Braun (1 991)." These data are in phyéical
quantities, thus obviating the need to convert value data to quantity data and eliminating the

\” The emplncal justification for this assumption is that the estimates reported in the literature for the effect
of factor price variations on cost are not strongly supportive of the assumption that the cost shocks are
observable. Ramey and West (1999) tabulated the results of seven studies regarding the significance of
the estimated coefficients for input prices. They reported that wages had a significant coefficient in only
one study and material prices in one study. (Ramey and West, 1689, 907). More detailed dlscussmn is
given in Ghali (2004). :

2
We are very grateful to Spencer D. Krane who made this data available.
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numereus sources of error involved in such calculations.” The data are monthly, eliminating. the
potential biases that may result from temporal aggregation. 4 They are at the four-digit SIC level
or-higher, reducing the potential biases that may result from the aggregation of heterogeneous
industries intosthe two-digit SIC level.”. The data are not seasonally adjusted, thus obviating the
need for re- lntroducmg seasonals in an adjusted series.”® A description of the data and their
_sourees is available-in Table 1 of Krane and Braun (1991,/564-565). We use the data, on the 24
industries studied by Ghali (2005). . .

Empirical Results of the J-tes

In Table 1 the results "of applylng the J test to ‘compare the two spedifications are
reported. In the first set of columns we report the results of testing M1, equation (3.1) assuming
that M2, equation (3.2) is maintained. This is done by estrmatlng the parameters of equation (3 2)
using OLS-as suggested by Davidson and MacKinhon,™® The coefficient of determination, R?, of
those regressions are reported in the first column, We-then used the predicted values of Q from ‘
that re‘gression ‘as an added regressor in the estimation of equation (1’) The coefficient of the .

added’ regressor Q 'is reported. in the secorid column and its ¢ value in the third column If the

coefficient of the added regressor lS srgnn‘lcantly dlfferent from zero, the model specnflcatlon 3. 1)
is rejected in favor of the model specrfrcatron (3. 2) As the fourth column shows ‘thls was the
¢ase for all of the mdustrles

' The process is reversed in the second set of columns of Table 1. We now malntaln l:he
model specification of equation (3.1) and test that of equatlon (3.2). The last colriin of this set of
columns shows that the model of equation (3 2) is rejected in favor of the model specification of
equation (3.1). - . Co :

. As can be seen from Table 1, for all mdustnes studled both competing. specrflcatrons are
rejected by the J-test. “When both models are rejected we must conclude that neither model is
satisfactory, a result that may not be welcome but that will perhaps spur us to develop better
models."(Davidson and MacKinnon, 1993, p. 383).However, it should be noted that each of the
model specifications explains very high.proportion of the monthly variation of output that as seen
by the high coefficients of determination reported for each. It may be that because each of the
specifications Is so successful in explaining the behavior of output, the J-test is not able fo
distinguish between them " In-other words if the malntalned spécification is successful in
explaifiing the” dependant varlable thé correlation between the predicted value and the
dependant value will be significant, and so will be the coefficient of the predicted value when
added as a regressor in the artificial compound model. This weakness of the J-test has been
noted in the literature and we exptain in detail.the theoretical reasons for this kind of problem.

t17

" For discussion of the potential measurement errors in converting value to quantity data for inventory
stocks,see Krane and Braun (1991, 560 ~562).

" See Ghali (1987) and Lai (1991). E ,

5 For discussion of the poténtial biases see Krane and Braun (1 990 7.

® For example see'Ramey, (1991) She Had to re- mtroduce seasonalrty as the data she was using was
seasonally adjusted. - .

7 The results reported in Table (1) are from Ghali 2007 reproduced with permrssxon ‘from publisher.”

Al equatlons were estimated under the assumption of an AR(%) process for the error term.




TABLE 1." Results from Davidson- MacKinnondJ -TEST

A BAYéSlAN EXTENSION OF THE J-TEST FOR NON-NESTED HYPOTHESES

INDUSTRY SAMPLE HzMaintained, HqTested HiMaintained H, Tested
PERIOD | R,? o -t - H4 R? a t Ho
Asphalt1 °* 1977:.01- | .955 | .767 16.76 . | R .980 .959 14,98 R
1988:12 )
Bituminous 1977:.01- | .606 | .371 8.432 R .944 .958 34276 | R
Coal 1988:09 v A . .
Cotton Fabric 1975:01- | 936 | .507 | 13.201 R .944 .578 14242 | R
1986:12 . . )
Distillate Fuel 1977:01- | .686 | .330 7.000 R .943 1.060 28310 | R
1988:12 ) ’ '
Gasoline 1977:01- | .733 | .246 3.750 R .904 1.058 19.085 | R
1988:12 . .
Glass | 1977.01- | 670 |.231 | 4.301 R 902 .969 20.822-| R
Containers 1989:03 )
fron and Steel 1956:01- | .969 | .598 15.868 R .966 642 18.1856 | R
Scrap 1988:12
IronOre 1961:01- | .873 | .376 12489 | R .966 1.087 37225 |.R
) 1988:12 . :
Jet Fuel 1977:01- | .899 | .182 3.932 R .083 961 28.234 | R
1988:12 :
Kerosene 1977:.01- | .823 | .318 5.551 R .949 1.155 26.824 | R
. 1989:03 »
Liquefied Gas | 1977:01- | .376 | .441 7.015 R 917 1.045 31.742 | R
1988:12
Lubricants 1977:01- | 496 | .198 2.940 R 912 1.046 25697 | R
1988:12 L
Man-made 1975.01- | .904 | .587 11.894 R .903 .553 10.606 | R
Fabric 1986:12 ) | - )
Newsprint 1961:01 .838 | .243 8.769 R 866 .965 44,514 | R
Canada 1988:12 - ' .
Newsprint US 1961:01- | .991 | 402 12,963 | R .996 773 30.423 - I'R
. | 1988:12- : . ..
Petroleum Coke | 1977:01 933 | .218 5.377 R 983 |.847 20469 (R
1989:03 '
Pig lron 1961:01- | .997 | .924 39214 | R .985 242 8.294 R
T 1988:12 . )
Pheumatic 1966:01- | .802 | 317 12310 | R .956 .983 40,722 {R
Casings 1988:12 .
Residual Fuel 1977:.01- | .985 | .313 6.950 R 991 .997 29659 |R
. 1988:12 ) :
Slab Zinc 1977:01- | .888 | .254 5.283 R 976 1.065 28.974 | R
1988:03
Sulfur 1961:01- | .889 | 281 | 6.348 R 088 | 1.024 72875 |R
1988:12 . '
Super 1981:01- | .941 | 325 | 6.743 R .981 .936 21897 | R
Phosphates 1988:12 .
Synthetic 1861.01 .833 | .198 5.567 R .965 1.026 34,948 ¥ R
Rubber 1984:12 . .
Waste Paper 1977:01 874 | 440 6.253 R .962 .896 19.073 | R
. 1988:02 -

R— Reject the Null Hypothesis
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Once we realized the problem, we then explored the Bayesian test paradigm that has a
unified approach for all kinds of testing situations. The Bayesian posterior odds and Bayes
Factors have*been used for all forms of tests and model selection problems. While the Bayesian
approach is highly attractive and can be applied for nested and non-nested models, the approach
is not popular i in applied economics due to the difficulty in specifying the prior distributions and the
complex derivation of the marginal posterior distributions. Therefore, following Surekha, Ghali and
Krieg (2008) we use the Bayesian extension of the J-test to approximate Bayes' factor that
' provides a more practical test for non-nested hypothesis, has a Bayesian justification and yields

more conclusive results for the production model. We also note that several new approaches
. have been developed for comparing non-nested theories in public policy and social sciences’
(see, Bozdogan (1987), Vuong(1989), Kiefer and Choi, (2008), Clarke. (2001, 2007), and
Chen(2008) ). What we propose is one of the most practical ways to extend the J-test.

C4A Bayesién Extension

In many non-standard testing of hypotheses situations when the classical procedures
lead to inconsistent results as in the case of J-test, the Bayesian approach provides an alternative
that is consistent (see, for example; Zellner (1971, 1985, 1994), Berger and Pericchi (2001)). The
Bayesian paradigm is generally more involved as it necessitates the specification of prior
distribution for the parameters as well as the hypotheses, obtaining marginal likelihoods,
Bayesian posterior odds and Bayes factors for the competing hypotheses. Therefore, it is not
surprising that we find a rather limited number of applications of the Bayesian approach even
though it is intuitively more appealing and provides consistent and meaningful results.

4.1 Bayesian Hypothesis Testing for Nested and Non-nested hypotheses

The theory of Bayesian testing of hypotheses is built around the concept of posterior
probabilities of. hypotheses and the Bayes factor, which were first introduced by Jeffreys (1935,
1961). Bayesian model comparison concepts and the issues that arise in empirical applications
_ have been discussed by Zellner (1971), Kass and Raftrey (1995), Berger and Pericchi (2001) and

Koop (20083), amongst many others, Schwarz (1978) paved the way for interplay between the
Infermation Criteria and the Bayes factor for Bayesian specification test. We use Schwarz’
_ approximation of Bayesian information criteria and the log hkehhood values to calculate Bayes
factors for the competing models.

If M1, M2 are two different model spemﬁcatlons for a given data D, the posterior odds
ratio K12 is given by

K12 = [P (D/H1)/P (DIH2)]* [P (H1) /P (H2)] . (4.1)
or . : . .
Posterior Odds = Bayes factor X Prior odds ‘ .. (4.2)

In the absence of-any definitive information or if we have little information we treat the two -
hypotheses apriori equally likely implying P(H1) =P(H2) = % ,and the prior odds ratio

¥ The two model specifications must be exhaustive if we need to obtain Posterior probabilities of -
. hypothesis from the posterior odds. The results can be easily extended for k model specifications.
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[P(H1) /P (H2)]is equal to 1.If prior odds equal one, from (4.2), the Posterior odds ratio
is same as the Bayes factor, .

P(D/His i=1,2...k) , the margmal likelihood and is also known as the weighted llkehhood
or the predictive likelihood and is given by ' :

P (D/Hi) = [ P(D/6i, Hi) v (0i/ Hi) dBi  i=1.2....k ' : . (4.4)
Where 0i, is the parameter under Hi and m (6i/ Hi) doi is its prior probability density and
fe°° P(D/6i, Hi) is the probability density of D given the value of i under the hypothesis Hi or
the likelihood function of 6. In the traditional Bayesian approach, we must specify the prior
distribution m(6i/ Hi) for the parameter(s) 6i.

The quantity P(D/Hi), is the prédictive probability of the data; that is the probability of
seeing this data which is calculated before the data is observed. Bayes factor which is the ratio of
these marginal probabilities of the data shows the evidence in favor of or against the hypothesis. -
in case of two hypotheses, i=1,2: ) )

K12 =P (D/H1)/ P (D/H2) L o (4.5)

K12= [ P(D/01, H1) w (01/H1) do1/ [;° P(D/62, H2) T (62/ H2) de2 . ... (4.8)

If K12 is greater than 1, the data favors Hypothesis 1 (Model M1) over Hypothesis 2
(Model M2) and if K12 is less than 1, the data favors -Hypothesis 2 (model M2). ‘

4.2 Bayes Factor, BIC and the Likelihood Values )

Although Bayes factors are fairly versatile and universally applicable for specification
testing, calculation of marginal likelihoods is extremely demanding and sometimes these may not
even exist (Leamer, 1978). As shown in Surekha, Ghali and Krieg (2008), we use the Bayesian
_extension of the J-test by using the log' likelihood values generated by using the J-test for the
approximation of the Bayes factor. This proves very effective in obtaining unequivocal choice ofa
production model. This is how it works In practice:

-2 SlC = BIC ‘ o (4.7)
SIC = (log[ p( D/IET,M1]~ log] p(D/BZ M2]) — % (p1 - p2)log(n), - . (4.8)
- Where 8¢ i-1,2 are the MLE under Model M1 and M2, p1, and p2 are the number of parameters _
in models 1 and 2 respectively and n is the sample size.

BIC (M1) = 2log p (D7 61, M1~ plin(n) RNY)
BIC (M2)= 2logp[p(D/ 82, M2]—p2In(n) and ' ..(4.10)
2log K12= BIC (M2) - BIC (M1) (4.11)

Since BICs can be calculated from: likelihood values, we can calculate twice the Bayes

- factor from (4.11) without specifying the prior distribution. Onee we know the 2 log K12and since

_/Models M1 and W2 are exhaustive in this case we can.obtain posterior probabilities I11+and 112

. for Models M1 and M2 by using the relationship:
K12

1 = K2 :ahd I12=

(4.12)

1+K12
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Table 2. Bayes factors and Posterior Probabilities of Models M1 and M2
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2Log K21 Evidence against] 2 log K12 Evidence 7! e
4 K21 M1 (K12) Against M2
Asphalt 101.99 [1.4E+22  lvery Strong -101.99 |7.12E-23  |Not worth 7.12E-23 1
) mention
#
Beer 18.66 |10695.36 very Strong -18.66 |9.35E-05 [Notworth 9.35E-05 0.998807
. ) mention
Bituminous 322.56 |1.1E+70  [very Strong -322.66 19.06E-71 [Notworth  [9.06E-71 1.
Coal mention
Cotton Fabric  [25.09 [280624.6 [very Strong -25.09 (3.56E-06 |Notworth |3.56E-06 0.999996
mention
Distillate Fuel {249.23 [1,32E+54 very Strong -249,23 [7.6E-55 Not worth 7.6E-55 1
C L mention
Gasoline 154.64 13.79E+33 [very Strong -164.64 |2.64E-34 [Notworth [2.64E-34 1
. mention
Glass 178.87 |6.94E+38 [very Strong -178.87 [1.44E-39 |Notworth 1.44E-39 1
Containers - . mention
Iron Scrap -18.37 10.000103 |not worth 18.37 9739.505  |Very strong |0.999897 0.000103
mention
IronOre 353.21 |4.99E+76 [very Strong -363.21 |2E-77 Not worth 2E-77 1
mention
Jet Fuel 257.77 |9.43E+55 |very Strong ~257.77 [1.06E-56 |Not worth 1.06E-56 1
: . mention
Kerosene 176.58 [1.34E+38 lvery Strong -175.58 |747E-39 |Notworth 7.47E-39 1
. mention
Liquified Gas  [277.70 [2E+60 very Strong - -277.70° |5E-61 Notworth  |5E-61 1
’ ) mention
Lubricants 232.60 [3.22E+50  very Sirong -232.60 |3.11E-51 Not worth 3.11E-51 1
i . mention .
. Man-made 7.61 44.98217 |Strong ~7.61" - [0.022231 |Not worth 0.021748 0.978252
Fabric mention .
NeWsprint 520.39 [1E+113 very Strong -520.39 |1E-113 Not worth 1E-113 IE
Canada L mention
Newsprint US  [513.09 [2.6E+111 very Strong -513.09 [3.8E-112 [Notworth 3.8E-112 1
ARD ] mention
Newsprint US  [276.53 [1.12E+60 - very Strong -276.53 [8.97E-61 [Notworth |8.97E-61 |1
: mention .
Petroleum 125.52 |1.81E+27 |very Strong -125.52 [5.63E-28 |Notworth ~ [553E-28 ~ |1
Coke - mention
Pig Iron -508.78 |3.3E-111 [not worth 508.78 |[3E+110 Very strong |1 3.3E-111
mentioning
Pneumatic §12.75 12.2E+111 |very Strong -512,75 |4.5E-112  |Not worth 4.5E-112 1
casings . mention .
Residual Fuel [197.12 |6.36E+42 very Strong- -197.12 [1.57E-43  [Notworth 167643 |1
. ' mention
Slab Zinc 216.21 [8.88E+46 |very Strong -216.21 [1.13E-47 |Notworth 1.13E-47 1
- . ) mention
Sulphur 722.68 |8.6E+156 [very Strong -722,68 |1.2E-157 |Notworth 1.2E-157 1
mention
Super 148.91 |217E+32 Jvery Strong -148.91 |4.62E-33 |Notworth  [4.62E-33 |1
Phosphate mention
Synthetic 460.03 17.8E+99 [very Strong -460.03 |1.3E-100 |[Notworth 1.3E-100 1
Rubber mention
Waste Paper [180.21 [1.36E+39 very Strong +180.21 |7.37E-40 |Notwerth  |7.37E-40 1
mention
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We use JeffreYs’ (1961, éppendix B) rules of thumb for interpreting Bayes factor and
make decisions for choosing between two cost functions for all fwenty five industries in our data
set. .

4.3 Bayes Factors and th‘e Non-nested Models

Let us consider that the model specification Myin equation 3.1 is the Null Hypothesis Ho
and the maintained hypothesis is model specification M2 in equation 3.2, As described above ,
the Bayes factor Ky, will measure the evidence for Model 1 against model 2 and Ky will measure
the evidence against M1, We have computed both sets of results for comparison with the
performance of the J-test in the earlier section. These results are given in the - Table 2 above. The-
results are quite consistent and unequivocal that specification M2 in equation 3.2 is strongly
supported by the data for 23 of-the 25 industries (except, iron scrap and pig iron) irrespective of
the choice of the Null and the maintained hypotheses. These results are quite distinctive as
compared to the results of the J-test and strongly support the Bayesian extension of the J-test for
obtaining meaningful model comparison results for applied researchers.

V. Conclusion

In earlier research the original J-test has been shown to over reject when the true model
fits the data poorly, when the regressors in the models being compared are highly correlated, or
when the false model contains more regressors than the true model. We presented examples
where the alternative specifications fit the data well but the J- test did not distinguish between
them: the J- test either rejects, or fails to reject both specifications. When such situations arise,

'we can supplement the J-test by a Bayesian extension that uses the estimated maximum

likelihood values obtained in the process of conducting the J-test. A comparison of resulits in
Table | and Table If clearly demonstrate that a Bayesian extension of the J-test provides a nice
and practical test for non-nested hypothesis that yields unequivocal results., This Bayesian
extension of the J-test that we demonstrate in case of production models has an advantage as it
gives us all the benefits of the Bayesian paradigm and the Bayes factors without having to specify
prior probabilities and going through the extensive Bayesian computations. Further work is
needed-to show the robustness of the Bayesian extension of the J-test for non-nested models
and a comparison with other information based methods for non-nested specifications.
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APPENDIX

4

Expressing the F statistic in terms of correlations between the variables

F(1, Tke-1)=Q /[ £ M, E/ (T-ks=1)] =[zaz§z“fiw]”"“ -

This test statistic can be expressed in terms of correlations between the variables. For
simplicity, we assume that all variables are deviations from means, Now:

D =YYV = S Y 1-RE | = (T - 1)s?[1-R%]

TR = VA5 = SR = (T 1), [1-R2,]

00 =YMP,Y = YPY-YPP Y=Y V-3 VY,

@02 =3 V2 -5 Y Y, I = ZW)%(Z\”(X\?Z)kz_Z\?;Z\?X\?Z

=LYUY LYY + (VP I Y2 = (20 YOI YN, V)G YN
=(T-1?*s)R? R} +R% R? . 203"V, Y,) /(3 Y?)] |

=(T-1?s;R} [R}, +R? R, ~2(Cov(V,Y,)/s2)]

Y2

=(T-1?s{R2 [R2 +R2 R, —2(R, , $,,8;,/52)]

Ve, P yz
ZUZZSV UVZZ i) (T—k,—1)
) (T -k, = (T —12s{R%[R2 +R2 R2 ;. —2(Ry 5 84,8, /52)]
(T-1)s282 (1-R2,)(1~R2, ) [(T 28{RZ [RZ, +R2 RE, ~2(R, ; 5,8, /s2)]]
_ (T-K ~NsIR} [R? +R? R?, —2(R; ; 848,75, i
55, (1-R2)(1-R%) — [32R2 [R; +R2 RZ; ~2(Ry; 8,8, /8]

" But.s?, = §R§ , so that the expression can be written as:

(T-k, —~DI[R? v TR} R2 = 2(Ry 4 S s;./87)]
(1 R2)(1- R ) =[RS, +R§x R§ ~2(R; 5 545y, 157)]
The F statistic for the model (2.2) with model (2.1) as maintained hypothesis, which we
denote by F is given by:

(T-k-NR, ~R, Ry, I’
(1-RE)(1-R3)-IR, -R, Ry, I°
The second part of the J test consists of maintaining (2.2) and testing for the significance
of (1~a) in (2.8"). This can be similarly derived with the roles of X and Z reversed. If the number
of regressors in Z is ky, the test statistic which we denote by °F is:

2F(1, Tk, —1) =




N

A BAYESIAN EXTENSION OF THE J-TEST FOR NON-NESTED HYPOTHESES 69

Tk, ~ 1R, Ry, Ry, P
(1- R L )(1— R2) [Ryx ~Ryz.R9x-yz]2

R7, is the coefficient of determination of the regression of Y, onX. Since V,is a linear

F(1,T =k, —1) =

transformation of Z, Y, = Z§, the coefficient RZ, =R?,.

Ry, I8 the correlation coéﬁicient of Y, and Y,, and since these are linear
transformations "of X and Z respectively, R, ;, Is the canonical correlation of the alternative
regressors X and Z.

If Z has only one variable and X has only one variable, Ry, = Ry, and the F statistic for
the model (2.2) with model (2.1) as maintained hypothesis, which we.denote by *F is given by:

(T-2)R; -R% P
(1=RZ)(1- RZ) ~[R; -R*

F(1T-2)=

This.can be written as:
(T- 2)[ -R, sz]z
1- R2 —R2 —R2 +2R R Ry

The second part of the J test consists of maintaining (2.2) and testing for the significanée
of (1-a) in (2.3"). This can be similarly derived with the roles of X and Z reversed If the number

FT~2)=

"of regressors in Z is ky, the test statistic which we denote by 'F is:

(T-k,~ IR, ~R2P
(1-R},)(1-R%,) - [Ry,—Rilz'

1F(‘i,T—k1 ~1) =
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